

Renal Dosing of Antiviral Agents for COVID-19 (Case)

Alice Tseng, PharmD, FCSHP, AAHIVP Toronto General Hospital/University of Toronto

Disclosures

- Unrestricted educational and research grants (paid to institution/organization):
 - Abbvie, Gilead, Merck, ViiV
- Speaker honoraria/consulting/advisory board:
 - Gilead, Merck, Pfizer, ViiV

Case

- 68 yo male, HIV+ 1986, virally suppressed since 2004.
- Comorbidities include hepatitis B, seizure disorder, depression, CKD (eGFR ~27). Resides in assisted living home.
- Medications:
 - Bictegravir/emtricitabine/TAF, levetiracetam 500 mg BID, atorvastatin 10 mg, olanzapine 25 mg, sertraline 25 mg, calcitriol 0.25 ucg, acetaminophen prn
- Oct/2023 → Diagnosed with COVID

Renal Impairment & COVID-19

- Patients with renal impairment at increased risk for severe outcomes with COVID-19
- COVID-19 can cause renal issues (AKI, tubulopathy, glomerulopathy)
- Need to know how to dose COVID agents in people with renal impairment
 - However, limited PK/safety data in this population
 - Exclusion from clinical trials, monograph restrictions

COVID Antivirals in Renal Impairment

- Remdesivir
- Molnupiravir
- Nirmatrelvir/ritonavir
- Focus on experience in patients with advanced renal impairment (eGFR<30)

Remdesivir Pharmacokinetics

- Dosing: 200 mg IV day 1, then 100 mg IV daily
 - Mild-moderate: 3 days total
 - Hospitalized: 5 days total, can be extended to 10
- Remdesivir is rapidly converted to nucleoside core (GS-441524), activated intracellularly to TP analogue GS-443902
- GS-441524 primarily undergoes renal clearance

Remdesivir in renal dysfunction

• Not recommended in eGFR<30 (manufacturer)

Davoudi-Monfared et al. American Journal of Therapeutics (2022) 29(5)

RDV in renal dysfunction: concerns

Mitochondrial toxicity

0000

0000

Potential	Accumulation of SBECD vehicle		
Περηγοιοχίζιτη	Potential risk of kidney or hepatic toxicity	Limited PK	
 Observed after prolonged exposure Increased kidney injury not observed in RDV trials (Wang 	 Toxicity in animal models @ doses 50-to 100-fold ↑ than clinical Accumulates in renal impairment but is not resorbed 	 3-fold to 6-fold ↑ in RDV parent & metabolite in hemodialysis (n=1) New data and clinical experience available MAP 	MAP
et al. 2020)			

RDV in COVID-19 patients with renal impairment: systematic review

Eligible studies (n=22) including: Cohort (n=8) Observational (n=8) Case series (n=3) Case report (n=3)

 No increase in adverse effects (hepatic, renal, GI) attributable to remdesivir vs. patients with normal renal function were reported eGFR <30 (n=327)

ESRD on RRT (n=238)

AKI (n=177)

Kidney transplant (n=117)

Davoudi-Monfared et al. Am J Therap 2022;29:e520-33.

Review

Remdesivir Use in the Real-World Setting: An Overview of Available Evidence

- Included 4 additional publications of patients with renal impairment vs. previous systematic review
 - Hemodialysis (n=436) Lim et al. 2022; Kikuchi et al. 2021.
 - Kidney transplant (n=165) Elec et al. 2022
 - Advanced kidney disease eGFR<30 (n=444) Stancampiano et al. 2022
- "All real-world studies showed that remdesivir was relatively safe and well-tolerated in patients with severe renal disease"

Akinosoglou et al. Viruses 2023;15:1167

REDPINE: Safety of RDV in hospitalized patients with moderate/severe renal insufficiency

- PopPK modeling:
 - Up to 5-fold ↑ AUC metabolite

В.	Baseline eGFR	GS-441524 steady-state AUC _{tau} (ng•h/mL)	Median (90% CI) fold change
95th percentile: 250.56 mL/min/1.73 m ² 5th percentile: 90.57 mL/min/1.73 m ²	Normal		0.49 (0.50-0.47) 1.17 (1.18-1.16)
95th percentile: 89.86 mL/min/1.73 m ² 5th percentile: 60.11 mL/min/1.73 m ²	Mild	•	1.18 (1.19-1.17) 1.64 (1.69-1.60)
95th percentile: 59.68 mL/min/1.73 m ² 5th percentile: 30.18 mL/min/1.73 m ²	Moderate		1.65 (1.70-1.61) 2.63 (2.75-2.51)
95th percentile: 29.64 mL/min/1.73 m ² 5th percentile: 15 mL/min/1.73 m ²	Severe		2.65 (2.78-2.53) 3.65 (3.84-3.45)
95th percentile: 14.84 mL/min/1.73 m ² 5th percentile: 2.54 mL/min/1.73 m ²	Kidney failure		3.66 (3.86-3.46) 5.09 (5.41-4.84)
	(56)	0.70 1.00 1.43 Fold change relative to reference years, 84.8 kg, 81.04 mL/min/1.73 m ² , hospitalized pati	ent)

Humeniuk et al. CROI 2023, #514. Santos et al. ECCMID 2023, #P2635.

RDV, remdesivir; IV, intravenous; IMV, invasive mechanical ventilation. *249 participants were randomised, but 6 were not treated. #16 a participant was discharged prior to Day 29, a phone follow-up was completed on Days 29 and 60

- No significant different in all-cause death or IMV by day 29
- No new safety signals identified with increasing concentrations of the GS-441524 metabolite or the excipient SBECD

Remdesivir in eGFR<30 mL/min

Research Letter | Infectious Diseases Remdesivir in Patients With Severe Kidney Dysfunction A Secondary Analysis of the CATCO Randomized Trial

Matthew Cheng, MD, CM; Rob Fowler, MDCM, MS(Epi); Srinivas Murthy, MD, CM, MHSc; Ruxandra Pinto, PhD; Nancy L. Sheehan, PharmD, MSc; Alice Tseng, PharmD

Discussion

In patients with eGFR less than 30 mL/min/1.73 m² at baseline who received remdesivir, there was no increased risk of transaminitis or toxic kidney effects at day 5.

JAMA Network Open 2022;5(8):e2229236.

Molnupiravir Pharmacokinetics

- Prodrug of NHC, rapidly converted to NHC-TP
- Minimal renal excretion

• EUA label:

- Population PK analysis: no impact of mild/moderate RI on PK of NHC
- PK not evaluated in eGFR<30
- Severe RI, ESRD, dialysis not expected to have significant impact on NHC pk
- No dose adjustment required in any degree of renal impairment

Lagevrio EUA, October 2023. Yucel HE. Med Sci Discov 2022;6:371-4.

Molnupiravir Safety in Severe Renal Impairment

- Phase III study in outpatients (MOVe-OUT) excluded eGFR<30 or dialysis patients
- Real-world experience:

Study	Stage of CKD	Adverse effects
Dufour et al. (2023)	 N=3 maintenance hemodialysis N=1 stage 4: transplant (eGFR 18) N=1 stage 5 (eGFR 11) 	None reportedRenal function remained stable
Cho et al. (2023)	 N=11 stage 4 (eGFR 15-30) N=1 stage 5 (eGFR <15) N=1 stage 5D (eGFR<15 on RRT) 	 GI upset (n=3), leading to early drug d/c in 2 1 patient with schizoaffective disorder hospitalized on day 3 due to worsening insomnia & visual hallucinations

Dufour et al. Kidney Res Clin Pract 2023;42:275-8. Cho et al. Nephrol Dial Transplant 2023;38:1912-4.

Nirmatrelvir is a CYP3A4 substrate but metabolic clearance is minimal when boosted with ritonavir

eGFR mL/min	Recommendation (monograph)
60 to <90 (mild)	Standard dose
30 to <60 (moderate)	↓ to 150/100 mg BID
<30 (severe)	Not recommended

Toussi S et al. CPT 2022;112:892-900. Cdn Paxlovid monograph, 3/10/2023

NMV/r in dialysis or eGFR<30: data

0000

Lingscheid et al. AAC 2022;66:1-4. UKRPG 2023. Lu et al. Front Pharmacol 2023; Hiremath et al. CJASN 2023;18:485-90. Chan et al. CID 2023.

Dosing NMV/r in kidney transplant patients

- Transplant immunosuppressives:
 - Up to 10-fold ↑ in CNI concentrations
- <u>NMV/r + tacrolimus</u>¹: significantly associated with AKI (41.13%), serum creatinine ↑ (14.18%), renal impairment & renal failure (@2.84%)

1. Qin et al. Exp Opin Drug Safety 2023.

0000 0000

Dosing NMV/r with tacrolimus: initial

Paxlovid – what Pharmacists and Prescribers need to Know, Feb 8, 2022

Yes We Can (Use Nirmatrelvir/Ritonavir Even in High Immunological Risk Patients Treated with Immunosuppressive Drugs)!

Proposed algorithm (based on simulation model):

- Day 1 (start of NMV/r): 1/8th TAC dose
- Days 2-5: hold TAC
- End of Day 6: 50% TAC dose
- Day 7: 75% TAC dose
- Day 8: 100% TAC dose

Lemaitre F. Clin Pharmacokinet 2022;61:1071-3.

- Similar proportion of patients within the rapeutic range by 2^{nd} TDM with simplified protocol (n=20) vs standard OST protocol (n=24)
- Low incidence of TAC toxicity, no episodes of acute rejection

Giguere et al. CJASN 2023;18:913-9.

Case

- 68 yo male, HIV+, hepatitis B, seizure disorder, CKD (eGFR 27), in assisted living home
 - Medications: B/F/TAF, levetiracetam, atorvastatin, olanzapine, sertraline, calcitriol, acetaminophen
- Remdesivir: not logistically feasible
 - Molnupiravir: not available in Canada

Case

 COVID: prescribed NMV/r at modified dose

Special Dosing Considerations:

eGFR[†]<30 mL/min: Day 1: Nirmatrelvir 300 mg and ritonavir 100 mg Days 2-5: Nirmatrelvir 150 mg and ritonavir 100 mg once daily.

- DDIs:
 - Held: atorvastatin
 - Continued other comedications including ARVs

WATERLOO SCHOOL OF

LIE DAN FACULTY OF PHAR

Nirmatrelvir/ritonavir: what prescribers and pharmacists need to know (Dec 12, 2022)

Summary

- Emerging data support use of COVID antivirals in patients with severe renal impairment
- Remdesivir & molnupiravir:
 - Standard dose in renal impairment
 - Potential access/logistical barriers
- Nirmatrelvir/ritonavir:
 - Dose reduction in eGFR<30
 - Simplified algorithm for dosing with transplant immunosuppressives

